Section (A): Distance formula, section formula, Slope, Collinearity

- A-1.(i) Prove that the points (2a, 4a), (2a, 6a) and (2a + $\sqrt{3}$ a, 5a) are the vertices of an equilateral true whose side is 2a.
- (ii) Find the points which trisect the line segment joining the points (0, 0) and (9, 12).

BESTSTUDYTUTORIAL

- A-2. (i) In what ratio does the point $\left(\frac{1}{2}, 6\right)$ divide the line segment joining the points (3, 5) and (-7, 9)
 - (ii) In which ratio P(2a 2, 4a 6)) divides Q (2a 3, 3a 7) and R(2a, 6a 4).
- Find the value of λ such that points P(1, 2), Q(-2, 3) and R(λ + 1, λ) are not forming a triangle (ii) Find the ratio in which the line segment joining of the points (1, 2) and (-2, 3) is divided by line 3x + 4y = 7
- Find the harmonic conjugate of the point R (5, 1) with respect to points P (2, 10) and Q (6, -2

[16JM1104

Strail	(B): Area of Tria	ingle & polygon, diff	erent forms	s of straiç	ght lines	
sect	- who naint	e 13 Al pnd 15 - / 1 tts	Dectivery, i an	d the co-or	dinates of a po	int P such that
B-1.	PA = PB and the area	of the mangle true,				* A.
B-2.	Find the area of the qu (i) (0, 0), (4, 3), (uadrilateral with vertices 6, 0), (0, 3)	as the points (ii) (0, 0	given in ea), (a, 0), (a	ch of the follow , b), (0, b)	ing : [15JM110553]
	Reduce $x + \sqrt{3}y + 4$	= 0 to the :		7.		
B-3.	(i) Slope intercep	ots form and find its slop		ept.	un	
	(11)	m and find its intercepts and find values of P and a				[15JM110554]
B-4.		e straight line that passes e axes is divided by the p				that the portion [16JM110446]
B-5.		the mid-points of the hand equation of its sid		riangle AE	3C are D(2, 1), E(5, 3) and [15JM110555]
B-6.	Find the straight line cu direction) with positive	atting an intercept of one use direction of x-axis	init on negative	x-axis and	inclined at 45° (in anticlockwise [16JM110447]
Secti	on (C) : Parametric	form, angle betwee	n lines, par	allel & pe	erpendicular	lines
C-1.	Through the point (3 $x - y = 2$. Find their ed	3, 4) are drawn two sti quations and also find th	raight lines e e area of triar	ach incline igle bounde	ed at 45° to the	ne straight line lines.
C-2./	The line $x + 3y - 2 = x - 7y + 5 = 0$, then fin	0 bisects the angle betw d equation of other line	veen a pair of	straight lin	ies of which or	[15JM110556] e has equation [15JM110557]
C-3.	Straight line 2x + 3y +	BFSTS [*]	TUDY	/TU	TORI	[15JM110558]
C-4.	Through the point P(4	, 1) a line is drawn to me	et the line 3x	- v = 0 at C	iwhore DO = =	11
	the equation of line.	1	TO THE WITE OX	y - o at c	where PQ = 2	$2\sqrt{2}$. Determine
	and equation of fine.			•		[16JM110448]
2-5.	/ angle v	$5\sqrt{2}$ units by making 135° with positive x-axis (clock	wise) to reach	Q. Find co-	ordinates of po	int Q.
Section	on (D): Position of	point, linear inequa	ation, perpe	endicular	distance in	nago 9 foot
1-1/	Plot the region				arotarroc, III	nage & 100t
	(i) $6x + 2y \ge 31$	(ii) 2x + 5y ≤ 10	(iii) 8x + 3y	+ 6 > 0	(iv) x > 2	[15JM110559]
1-2.	11 2 4 4 Y - 3 5 U : X -	stem of linear inequation $3y + 10 \le 0$ $\ge 3, x - 2y \le 2, x, y \ge 0.$	n graphically			[15JM110560]
3.	Find coordinates of the (2, 3) to the line v = 3	e foot of perpendicular, in	nage and equ	ation of per	rpendicular dra	Wn from the poin

- Starting at the origin, a beam of light hits a mirror (in the form of a line) at the point A(4, 8) and reflected line passes through the point B (8, 12). Compute the slope of the mirror. [16JM110449] Find the nearest point on the line 3x + 4y - 1 = 0 from the origin. D-5 D-6. Find the position of the origin with respect to the triangle whose sides are x + 1 = 0, 3x - 4y - 5 = 0, 5x + 12y - 27 = 0[15JM110561] Find the area of parallelogram whose two sides are y = x + 3, 2x - y + 1 = 0 and remaining two sides D7. are passing through (0, 0). Section (E): Centroid, orthocentre, circumcentre, incentre, excentre, Locus For triangle whose vertices are (0, 0), (5, 12) and (16, 12). Find coordinates of E-1. [15JM110562] (i) Centroid Circumcentre (ii) (iii) Incentre (iv) Excentre opposite to vertex (5, 12) E-2. Find the sum of coordinates of the orthocentre of the triangle whose sides are x = 3, y = 4 and 3x + 4y = 6. [16JM110450] E-3. Find equations of altitudes and the co-ordinates of the othocentre of the triangle whose sides are 3x - 2y = 6, 3x + 4y + 12 = 0 and 3x - 8y + 12 = 0. [15JM110563] A triangle has the lines $y = m_1 x$ and $y = m_2 x$ for two of its sides, where m_1 , m_2 are the roots of the equation $x^2 + ax - 1 = 0$, then find the orthocentre of triangle. [16JM110451] Find the locus of the centroid of a triangle whose vertices are (a cos t, a sin t), (b sin t, -b cos t) and (1, 0), where 't' is the parameter. [15JM110564]
- E-6. Show that equation of the locus of a point which moves so that difference of its distance from two given
- points (ae, 0) and (-ae, 0) is equal to 2a is $\frac{x^2}{a^2} \frac{y^2}{a^2(e^2-1)} = 1$. [16JM110452]
- The ends of the hypotenuse of a_{i} right angled triangle are (6, 0) and (0, 6), then find the locus of third vertex E-7. of triangle. [15JM110565]
- Find the locus of point of intersection of the lines x cos α + y sin α = a and x sin α y cos α = b, where E-8. α is a parameter. [16JM110453]

Section (F): Angle Bisector, condition of concurrency, family of straight lines

- Find equations of acute and obtuse angle bisectors of the angle between the lines 4x + 3y 7 = 0 and 24x + 7y - 31 = 0. Also comment in which bisector origin lies. [15JM110566]
- Find the value of λ such that lines x + 2y = 3, 3x y = 1 and $\lambda x + y = 2$ can not form a triangle.[16JM110454]
- Find the equation to the straight line passing through The point (3, 2) and the point of intersection of the lines 2x + 3y = 1 and 3x - 4y = 6.
 - The intersection of the lines x + 2y + 3 = 0 and 3x + 4y + 7 = 0 and perpendicular to the straight (ii) line y - x = 8. [15JM110567]
- Find the locus of the circumcentre of a triangle whose two sides are along the co-ordinate axes and third side passes through the point of intersection of the lines ax + by + c = 0 and (x + my + n = 0). [16JM110455]

Section	on (G) : Pair of strai	ght lines, Homog	enization			
G-1.	If the slope of one of th	ne lines represented l		be the n th power of	the other, then	
	prove that $(ab^n)^{\frac{1}{n+1}} + (ab^n)^{\frac{1}{n+1}}$	$(a^nb)^{\frac{1}{n+1}} + 2h = 0$.			[15JM110568]	
G-2.	For what value of λ does the equation $12x^2 - 10xy + 2y^2 + 11x - 5y + \lambda = 0$ represent a pair of straight lines? Find their equations, point of intersection, acute angle between them and pair of angle bisector. [15JM110569]					
G-3.	(i) Find the integral values of 'h' for which $hx^2 - 5xy + 4hy^2 + x + 2y - 2 = 0$ represents two real straight lines. (ii) If the pair of lines represented by equation $k(k-3)x^2 + 16xy + (k+1)y^2 = 0$ are perpendicular to each other, then find k. [15JM110570]					
G-4	Find the equation of the straight lines joining the origin to the points of intersection of the line $(x + my + n = 0)$ and the curve $y^2 = 4ax$. Also, find the condition of their perpendicularity.[16JM110456]					
G-5	Find the condition that the diagonals of the parallelogram formed by the lines $ax + by + c = 0$; $ax + by + c' = 0$; $a'x + b'y + c = 0$, $a'x + b'y + c' = 0$ are at right angles. Also find the equation to the diagonals of the parallelogram.					
	PART -	II: ONLY ONE	OPTION CORF	RECT TYPE		
Secti	ion (A) : Distance fo			wa		
A-1.	If the points (k, 2 – 2k are), (1 – k, 2k) and (–k -	-4, 6 – 2k) be collinear,	the number of poss	ible values of k	
	(A) 4	(B) 2	(C) 1	(D) 3		
A-2.	Given a ABC with une of all point which is equ	equal sides. P is the se uidistant from sides AE	It of all points which is each and AC. Then $n(P \cap C)$	quidistant from B & C Q) equals :	and Q is the set [15JM110572]	
	(A) 1	(B) 2	(C) 3	(D) Infinite		
A-3	A line segment AB is dis mid point of AB.	ivided internally and ex	sternally in the same rati	o (> 1) at P and Q res	spectively and M	
	Statement-1: MP, M Statement-2 AP, AB	IB, MQ are in G.P. 3 and AQ are in HP.				
		1 is true, STATEMEN	NT-2 is true and STAT	EMENT-2 is correct	explanation for	
	(B) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is not correct explanation for STATEMENT-1					
	(C) STATEMENT-1 is true, STATEMENT-2 is false (D) STATEMENT-1 is false, STATEMENT-2 is true					
Secti	(E) Both STATEM	ENTS are false Blangle & polygon,	different forms of	Straight lines	ORIAL	
B-1.						
/	(-2, 3), (4, -3) (A) 1.5 sq. units		mid points of sides of t (C) 6 sq. units	ne mangie wnose ve (D) 12 sq. un	[15JM110573]	
B-2.	A straight line through is :	P (1, 2) is such that	its intercept between t	he axes is bisected		
	(A) $x + 2y = 5$	(B) $x - y + 1 = 0$	(C) $x + y - 3 = 0$	(D) 2x + y -	[15JM110574] 4 = 0	
				Scanned by	CamScanner	

Dir.

B-3.	The number of integral interior of the triangle v (A) 133	I points (integral point mea with vertices (0, 0), (0, 21) (B) 190	ans both the coordinates and (21, 0), is (C) 233	should be integ (D) 105	er) exactly in the
B-4.	The line joining two partial and angle of 15°. The (A) $x - \sqrt{3}y - 2 = 0$	oints A (2, 0) and B (3, 1) i equation of the line in the	is rotated about A in the answer position is : (B) $x - 2y - 2 = 0$	anticlock wise o	lirection through [16JM110457]
	(C) $\sqrt{3} \times - y - 2\sqrt{3}$	= 0	(D) $\sqrt{2} \times - y - 2\sqrt{2} =$	0	
B-5.	In a \triangle ABC, side A x + 2y = 16. If the mi (A) 2x + y = 16	AB has the equation 2 id point of BC is $(5, 6)$, the $(B) \times + y = 11$	en the equation of BC is	e side AC has s (D) x + y = 10	
B-6.		s above the x-axis and has			
	makes an angle $\alpha \left(0 < \alpha < \frac{\pi}{4}\right)$ with the positive direction of x-axis. The equation of its diagonal not passing				
	through the origin is : (A) y ($\cos \alpha - \sin \alpha$)	$-x (\sin \alpha - \cos \alpha) = a$		$x (\sin \alpha - \cos \alpha)$	[16JM110458]) = a
Sect	ion (C) : Parametri	c form, angle betwee	en lines, parallel & p	erpendiculai	lines
ç1.	The distance of the	point (2, 3) from the line	2 x - 3 y + 9 = 0 measur	ed along a line	x - y + 1 = 0 is;
	(A) $5\sqrt{3}$	(B) $4\sqrt{2}$	(C) $3\sqrt{2}$	(D) $2\sqrt{2}$	[15JM110577]
C-2.	x + y - 5 = 0 and $x - 4and the y-axis at the$	f a straight line which past $y + 3 = 0$ and perpendicular point $(0, -3)$, $(B) 2x - 3y + 10 = 0$	ar to the straight line inter	secting x-axis at	the point (-2, 0) [15JM110578]
C-3	along the line x - 2y	from the point $(2, -1)$, one refer to the particles move to $(2\sqrt{5} + 2, \sqrt{5} - 1)$	moving 2 units along the lipsyards increasing y, then (B) $\left(2\sqrt{5}+2,\sqrt{5}-1\right)$, (their new positio	the other 5 units ns are
	(C) $(2+\sqrt{2}, \sqrt{2}+1)$	$(2\sqrt{5}+2,\sqrt{5}+1)$	(D) none of these		
CA	and divided distance	+ $2y = 2$ and $x + 2y = 6$ are φ e between lines in the ratio (B) $3x + 6y = 14$	2:1 internally		[16JM110459]
Se	ction (D) : Position	of point, linear inequ	iation, perpendicula	r distañce, in	nage & foot
D	$a^2x + a by + 1 = 0$	of 'b' for which the origin ar $\forall a \in R, b > 0 \text{ are } :$ (B) $b \in (0, 2)$		ne same side of $(D) (2, \infty)$	the straight line, [15JM110579]
(D-2	The point $(a^2, a + 1)$ the origin, then (A) $a \ge 1$ or $a \le -3$ (C) $a \in (0, 1)$) is a point in the angle be	tween the lines $3x - y + 1$ (B) $a \in (-3, 0) \cup (1/3)$ (D) $a \in (-\infty, 0)$		5 = 0 containing [16JM110460]
	y = 0 is the point	point A (1, 2) by the line mir (α , β), then : (B) α = 0, β = 0			
D-4	The equations $x - y + 5 = 0$ and $y + 5 = 0$	of the perpendicular I $x + 2y = 0$ respectively. If	bisector of the sides the point A is (1, –2), the	AB and AC on the equation of	of a ABC are of the line BC is:

(A) 14x + 23y = 40 (B) 14x - 23y = 40

(D) 23x - 14y = 40

(C) 23x + 14y = 40

Straight Line Section (E): Centroid, orthocentre, circumcentre, incentre, excentre, Locus

The orthocentre of the triangle ABC is 'B' and the circumcentre is 'S' (a, b). If A is the origin, then the co-ordinates of C are:

(B)
$$\left(\frac{a}{2}, \frac{b}{2}\right)$$

(B)
$$\left(\frac{a}{2}, \frac{b}{2}\right)$$
 (C) $\left(\sqrt{a^2 + b^2}, 0\right)$

(D) none

A triangle ABC with vertices A (-1, 0),B (-2, 3/4) & C (-3, -7/6) has its orthocentre H. Then the E-2. orthocentre of triangle BCH will be:

$$(A) (-3, -2)$$

$$(C)(-1,2)$$

(D) none of these

Find locus of centroid of $\triangle ABC$, if B(1, 1), C(4, 2) and A lies on the line y = x + 3. E-3.

(A)
$$3x + 3y + 1 = 0$$

(B)
$$x + y = 3$$

(C)
$$3x - 3y + 1 = 0$$

D)
$$x - y = 3$$

The locus of the mid-point of the distance between the axes of the variable line x cos α + y sin α = p, E-4. [15JM110583] where p is constant, is

(A)
$$x^2 + y^2 = 4p^2$$

(A)
$$x^2 + y^2 = 4p^2$$
 (B) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$ (C) $x^2 + y^2 = \frac{4}{p^2}$ (D) $\frac{1}{x^2} - \frac{1}{y^2} = \frac{2}{p^2}$

(C)
$$x^2 + y^2 = \frac{4}{p^2}$$

(D)
$$\frac{1}{x^2} - \frac{1}{y^2} = \frac{2}{p^2}$$

A variable straight line passes through a fixed point (a, b) intersecting the co-ordinates axes at A & B. E-5. [15JM110584] If 'O' is the origin, then the locus of the centroid of the triangle OAB is:

(A)
$$bx + ay - 3xy = 0$$

(B)
$$bx + ay - 2xy = 0$$

(C)
$$ax + by - 3xy = 0$$

(A)
$$bx + ay - 3xy = 0$$
 (B) $bx + ay - 2xy = 0$ (C) $ax + by - 3xy = 0$ (D) $ax + by - 2xy = 0$

Consider a triangle ABC, whose vertices are A(-2, 1), B(1, 3) and C(x, y). If C is a moving point such that area E-6. of $\triangle ABC$ is constant, then locus of C is : [16JM110462]

- (A) Straight line
- (B) Circle
- (C) Ray
- (D) Parabola

If the equation of the locus of a point equidistant from the points (a,, b,) and (a,, b) is E-7. $(a_1 - a_2) x + (b_1 - b_2) y + c = 0$, then the value of 'c' is:

(A)
$$\frac{1}{2} (a_2^2 + b_2^2 - a_1^2 - b_1^2)$$

(B)
$$a_1^2 - a_2^2 + b_1^2 - b_2^2$$

(C)
$$\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$$
 (D) $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$

(D)
$$\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$$

Section (F): Angle Bisector, condition of concurrency, family of straight lines

The equation of bisectors of two lines $L_1 \& L_2$ are $2 \times -16 \times -5 = 0$ and $64 \times +8 \times +35 = 0$. If the line L. passes-through (- 11, 4), the equation of acute angle bisector of L, & L, is:

(A)
$$2 \times - 16 \times - 5 = 0$$

(B)
$$64 \times + 8 \text{ y} + 35 = 0$$

(C)
$$2x + 16y + 5 = 0$$

(D)
$$2x + 16y - 5 = 0$$

The equation of the internal bisector of $\angle BAC$ of $\triangle ABC$ with vertices A(5, 2), B(2, 3) and F-2. C(6, 5) is [16JM110463] (B) x + 2y - 12 = 0 (C) 2x + y - 12 = 0 (D) 2x - y - 12 = 0

(A)
$$2x + y + 12 = 0$$

(B)
$$x + 2y - 12 = 0$$

(C)
$$2x + y - 12 = 0$$

(D)
$$2x - y - 12 = 0$$

Consider the family of lines $5x + 3y - 2 + \lambda_1 (3x - y - 4) = 0$ and $x - y + 1 + \lambda_2 (2x - y - 2) = 0$. Equation of F-3_. a straight line that belong to both families is -

(A)
$$25x - 62y + 86 = 0$$

(B)
$$62x - 25y + 86 = 0$$

(C)
$$25x - 62y = 86$$

(D)
$$5x - 2y - 7 = 0$$

F-4.	The equation of a line	of the system $2x + y + 4$	$1 + \lambda (x - 2y - 3) = 0$ which	ch is at a distance $\sqrt{10}$ units f		
	point $A(2, -3)$ is			[16JM1104		
	(A) $3x + y + 1 = 0$	(B) $3x - y + 1 = 0$	(C) $y - 3x + 1 = 0$	(D) $y - 3x - 1 = 0$		
F-5.	The lines $ax + by + c = 0$, where $3a + 2b + 4c = 0$, are concurrent at the point :					
	$(A) \left(\frac{1}{2}, \frac{3}{4}\right)$	(B) (1, 3)	(C) (3, 1)	(D) $\left(\frac{3}{4}, \frac{1}{2}\right)$		
01	(-)	BESTS	TUDYTI	ITORIAL		

Section (G): Pair of straight lines, Homogenization

G-1. If the slope of one line of the pair of lines represented by $ax^2 + 10xy + y^2 = 0$ is four times the slope of the other line, then a = [15JM110586

(A) 1

(B)2

(C)4

(D) 16

G-2. The combined equation of the bisectors of the angle between the lines represented by $(x^2 + y^2) \sqrt{3} = 4xy$ is [15JM110587]

(A) $y^2 - x^2 = 0$

(B) xy = 0 (C) $x^2 + y^2 = 2xy$ (D) $\frac{x^2 - y^2}{\sqrt{3}} = \frac{xy}{2}$

The equation of second degree $x^2 + 2\sqrt{2} xy + 2y^2 + 4x + 4\sqrt{2} y + 1 = 0$ represents a pair of straight G-3. lines. The distance between them is

(A)4

(B) $\frac{4}{\sqrt{3}}$

(C)2

(D) $2\sqrt{3}$

The straight lines joining the origin to the points of intersection of the line 2x + y = 1 and curve G-4. $3x^2 + 4xy - 4x + 1 = 0$ include an angle : [15JM110588]

(A) $\frac{\pi}{2}$

(B) $\frac{\pi}{4}$

(D) $\frac{\pi}{6}$