PART A - PHYSICS

3.

A particle is projected at an angle θ above the horizontal with a speed u. After some time the direction of its velocity makes an angle ϕ above the horizontal. The speed of the particle at this instant is

$$(3) \frac{u\sin\theta}{\sin\phi}$$

(4)
$$\frac{u\cos\phi}{\cos\theta}$$

Figure shows four possible trajectories of a kicked football. Ignoring air resistance, rank the curves according to the initial horizontal velocity component the highest first

- (1) 1, 2, 3, 4
- (2) 1, 3, 2, 4
- (3) 3, 4, 1, 2
- (4) 4, 3, 2, 1

Two particles of mass 1.5 kg each are tied at the ends of a light string of length 10m. The whole system is kept on a frictionless horizontal surface with the string held tight so that each mass is at a distance 5m from the centre P (as shown in figure). Now the mid point of the string is pulled vertical upwards with a constant force of 10N. As a result, the particles move towards each other on the surface. The magnitude of relative acceleration, when the separation between them becomes 6m, is

- $(1) 2.5 \text{ m/s}^2$
- $(2) 5 \text{ m/s}^2$
- (3) 10 m/s²
- (4) 20 m/s²

An arrangement shown in figure has four identical blocks connected with horizontal strings being pulled by a force F on one side. Tension in the various strings are T_1 , T_2 & T_3 and surface is smooth. Choose the correct option.

(1)
$$T_1 + T_2 + T_3 = F$$

(2)
$$T_1 + T_2 + T_3 = 2F$$

(3)
$$2(T_1 + T_2 + T_3) = F$$

(4)
$$2(T_1 + T_2 + T_3) = 3F$$

A particle is moving eastwards with a velocity of 5 m/s. In 10s the velocity changes to 5 m/s northwards. The average acceleration in this time is

- (1) $\sqrt{2}$ towards E-W
- (2) $\sqrt{2}$ towards N-W

(3)
$$\frac{1}{\sqrt{2}}$$
 towards N-W

(4)
$$\frac{1}{\sqrt{2}}$$
 towards E-W

The co-ordinates of a particle moving in a plane are given by $x = a \cos \omega t$ and $y = a \sin \omega t$ then distance travelled by the particle in

time interval t = 0 to $t = \frac{\pi}{2\omega}$ is

- (1) π
- (2) aπ
- (3) $\frac{a}{2}\pi$
- (4) 3an
- 7. Choose incorrect statement
 - (1) If two balls of different masses are thrown in same direction with same speed then they follow same parabolic path.
 - (2) A dimensionless quantity must have unit
 - (3) A dimensionless quantity must be unitless
 - (4) A unitless quantity must be dimensionless
- 8. A ladder is resting on two mutually perpendicular walls. If ladder starts to slide and velocity of point B at a certain point when θ is 37°, is 3 m/sec then velocity of point A at this moment is

- (1) 4 m/s
- (3) 8 m/s
- (2) 6 m/s
- (4) None of these

- Two transparent elevator cars A and B are moving in front of each other. Car A is moving up and retarding at a1, while car B is moving down and retarding at a₂. Person in car A drops a coin inside the car. What is the acceleration of coin observed by person in car B.
- (1) $g + a_2 downward$
- (2) $g a_1 a_2$ downward
- (3) $g a_1 + a_2$ downward
- (4) None of these

Two cars A and B travels along x-axis. The distance of A & B from the starting point is given as a function of time $x_A = 4t + t^2 &$ $x_B = 2t^2 + 2t^3$ (here x is in meter & t is in sec.). At what times is the distance from A to B neither increasing nor decreasing

- (3) $\frac{5}{6}$ sec.
- (4) none

A perfectly straight portion of a uniform rope has mass M and length L. At end A of the segment, the tension in the rope is $T_{\rm A}$; at end B it is $T_{\rm B}$ (> $T_{\rm A}$). The tension in the rope at a distance L/5 from end A is

- (1) $T_{\rm B} T_{\rm A}$
- (2) $(T_{\rm A} + T_{\rm B})/5$
- (3) $(4T_{\cdot} + T_{r})/5$
- (4) $(T_{\rm B} T_{\rm A})/5$

- A uniform thick string of length 5 m is 23. resting on a horizontal frictionless surface. It is pulled by a horizontal force of 5 N from one end. The tension in the string at 1m from end where force is applied, is:
 - (1) zero
- (2) 5 N

(3) 4 N

- (4) 1 N
- A particle is projected vertically upward 24. with velocity 50 m/s from a height of 100 m tower at t = 0. t = 2 sec later another particle is thrown vertically upwards from ground with same velocity. At what time, they are at the same level.
 - (1) 11 sec
- (2) 10 sec
- (3) 5 sec
- (4) 15 sec
- motion, two-dimensional 25. instantaneous speed vo is a positive constant. Then, which of the following are necessarily true?
 - (1) The acceleration of the particle is zero.
 - (2) The acceleration of the particle must be constant.
 - (3) The acceleration of the particle is neccessarily in the plane of motion.
 - (4) Theparticle must be undergoing a uniform circular motion.

In the system shown in figure, all surfaces are smooth, pulley and string are massless. The string between two pulley & between pulley and block of mass 5m is parallel to inclined surface If system is released from rest then acceleration of the wedge is

$$(1) \frac{11g}{13} \text{m/sec}^2$$

(2)
$$\frac{440}{205}$$
 m/sec²

$$(3) \frac{5g}{13} \text{m/sec}^2$$

(4) None of these

A body is projected at time (t = 0) from a certain point on a planet's surface with a certain velocity at a certain angle with the planet's surface (assumed horizontal). The horizontal and vertical displacements x & y (in meter) respectively vary with time t in second as, $x = 10\sqrt{3}$ t and y = 10 t - t². Then the maximum height attained by the body is:

- (1) 200 m
- (2) 100 m

(3) 50 m

(4) 25 m

17. If R is the range of a projectile of horizontal plane and h its maximal height, then maximum horizontal range with the same speed of projection is

$$(2) \frac{R^2}{8h}$$

(3)
$$2R + \frac{h^2}{8R}$$

(4)
$$2h + \frac{R^2}{8h}$$

- 18. Two particles, one with constant velocity 50m/s and the other with unifor acceleration 10m/s², start moving simultaneously from the same place in the same direction. They will be at a distant of 125m from each other after
 - (1) 5 sec.
- (2) $5(1-\sqrt{2})$ sec.
- (3) 10sec.
- (4) $10(\sqrt{2} + 1)$ sec.
- 19. A boat is moving towards east with velocity 4 m/s with respect to still water and riving is flowing towards north with velocity 2 m and the wind is blowing towards nor with velocity 6 m/s. The direction of the flag blown over by the wind hoisted on the boat is:
 - (1) north-west
 - (2) south-east
 - (3) $tan^{-1}(1/2)$ with east
 - (4) north

A helicopter is rising vertically up with constant velocity of 5 m/s. A ball is projected vertically up from the helicopter with velocity v(relative to ground). If ball crosses the helicopter 3 sec after it's projection then v is $(g = 10 \text{ m/s}^2)$

- (1) 80 m/sec
- (2) 20 m/sec
- (3) 70 m/sec
- (4) 50 m/s

Acceleration of a particle as seen from two refrence frame 1 & 2 has magnitude $3m/\sec^2$ & 4 m/s^2 respectively. The magnitude of acceleration of frame-2 with respect to frame-1 can not be possible

- $(1) 8 \text{ m/s}^2$
- (2) 6 m/s²
- $(3) 2 \text{ m/s}^2$
- $(4) 5 \text{ m/s}^2$

An observer on ground sees a boat cross a river of width 800 m perpendicular to its stream in 200 seconds. He also finds a man on a raft floating at speed of 3 m/s with river. The distance travelled by boat as seen by man on the raft in crossing the river is-

- (1) 800 m
- (2) 1000m
- (3) 1200m
- (4) 1600m

- 12. A stone is projected horizontally with speed u from the top of a tower of height h and it strikes the ground at angle θ with horizontal then it's minimum speed in it's journey, is
 - (1) $u\cos\theta$
- (2) u
- (3) $usin\theta$
- (4) v/2
- 13. A block slides down a frictionless plane inclined at an angle θ . For what value of θ , the horizontal component of acceleration of the block is maximum.

(1)
$$\theta = 45^{\circ}$$

$$(2) \theta = 90^{\circ}$$

(3)
$$\theta = 53^{\circ}$$

$$(4) \theta = 75^{\circ}$$

14. A rod of length ℓ & mass m rests on two hemispherical balls of radius R & r, which fixed on horizontal table. Assuming the surface is frictionless then find minimum value of F so that rod will be at rest

$$(1) \ mg \left(\frac{R-r}{R+r}\right)$$

(2)
$$mg\left(\frac{R+r}{R-r}\right)$$

$$(3) \frac{\text{mgr}}{R}$$

$$(4) \frac{mgR}{r}$$

- with uniform velocity ui, observes that the rain is falling vertically downward. If he doubles his speed, he finds that the rain is coming at an angle θ to the vertical. The velocity of rain with respect to the ground is (take vertically upward direction as j):
 - (1) ui-utan θj
 - (2) ui u cot θj
 - (3) $u\hat{i} + u \cot \theta \hat{j}$
 - $(4) \frac{\mathbf{u}}{\tan \theta} \hat{\mathbf{i}} \mathbf{u} \hat{\mathbf{j}}$
- Two particles are moving along a straight line as shown. The velocity of B as seen from the reference frame of A, is

$$V_A$$
 A V_B B

- (1) $V_A + V_B$
- $(2) \mid V_A V_B \mid$
- (3) $V_A V_B$ taken slottsged (4)
- $(4) V_{B} V_{A}$

28. In which of the following cases magnitude of acceleration of the block will be maximum (Neglection frick mass of pulley and string)

A smooth cylinder is resting on two corner edges A and B as shown in figure. The normal reaction at the edges A and B are N_A and N_B respectively then:

Which of the following orbital is

$$(1) N_A = \sqrt{2}N_B$$

(2)
$$N_B = \frac{2\sqrt{3}N_A}{5}$$

(3)
$$N_A = \frac{N_B}{2}$$
 mag no to else evitas

(4)
$$N_B = \sqrt{3}N_A$$

- 30. The force exerted by a special compression device is given as function of compression x as $F_x(x) = kx$ $(x \ell)$ for $0 \le x \le \ell$, where ℓ is the maximum possible compression and is a constant. The force exerted by the device under compression is maximum when compression is:
 - (1)0
 - $(2) \ell/4$
 - (3) $\ell / \sqrt{2}$
 - (4) 1/2

Which of the following